久久99国产亚洲高清-久久99国产亚洲高清观看首页-久久99国产亚洲精品观看-久久99国产一区二区-久久99国产一区二区三区-久久99国产综合精品

樹人論文網一個專業的學術咨詢網站!!!
樹人論文網
學術咨詢服務

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE

來源: 樹人論文網 瀏覽次數:313次
創刊時間:2001
周期:Semimonthly
ISSN:1532-0626
影響因子:1.167
是否開源:No
年文章量:367
錄用比:容易
學科方向:計算機:軟件工程
研究方向:工程技術
通訊地址:JOHN WILEY & SONS LTD, THE ATRIUM, SOUTHERN GATE, CHICHESTER, ENGLAND, W SUSSEX, PO19 8SQ
官網地址:http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1532-0634
投稿地址:http://mc.manuscriptcentral.com/cpe
網友分享經驗:一般,3-8周

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE雜志中文介紹

并發與計算實踐與經驗(CCPE)出版了高質量的原始研究論文和權威研究評論論文,這些論文的重疊領域包括:并行和分布式計算;高性能計算;計算和數據科學;人工智能和機器學習;大數據應用、算法和系統;網絡科學;本體論和語義學;安全和隱私;云/邊緣/霧計算;綠色計算;以及量子計算。強調與這些領域的實踐和經驗相關的新研究應該是貢獻的一個重要方面,而不是解決理論方面的問題。提交應該涉及或暗示重大的并發性和/或計算問題。在這些廣泛的領域中,CCPE的范圍包括并行和分布式系統計算和數據密集型應用程序的設計、實現和優化。這包括新的并發算法和應用程序的開發,它們的并行性能分析和建模,以及新的編程或建模語言和相關的組合方法。與計算和數據密集型應用相關的領域包括但不限于大規模計算科學、人工智能以及處理衛星、科學實驗、傳感器網絡、醫療儀器和其他來源的海量數據集。并行和分布式系統環境下的資源管理技術,以及能源感知計算也是人們感興趣的話題。

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE雜志英文介紹

Concurrency and Computation-Practice & Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:Parallel and distributed computing;High-performance computing;Computational and data science;Artificial intelligence and machine learning;Big data applications, algorithms, and systems;Network science;Ontologies and semantics;Security and privacy;Cloud/edge/fog computing;Green computing; andQuantum computing.Emphasis on novel research related to practice and experience in these areas should be an essential aspect of contributions, rather than addressing theoretical aspects. Submissions should involve or imply significant concurrency and/or computational issues. Within these broad areas, the scope of CCPE includes the design, implementation, and optimization of compute and data-intensive applications for parallel and distributed systems. This includes the development of novel concurrent algorithms and applications, their parallel performance analysis and modelling, and new programming or modelling languages and relevant methodologies for composing them. Areas relevant to compute and data-intensive applications include, but are not limited to, large-scale computational science, artificial intelligence, and the processing of voluminous datasets from satellites, scientific experiments, sensor networks, medical instruments, and other sources. Techniques for resource management in the context of parallel and distributed systems, and energy-aware computing are also topics of interest.

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE影響因子

計算機:軟件工程領域相關期刊
    暫時沒有數據