久久99国产亚洲高清-久久99国产亚洲高清观看首页-久久99国产亚洲精品观看-久久99国产一区二区-久久99国产一区二区三区-久久99国产综合精品

樹人論文網(wǎng)一個專業(yè)的學(xué)術(shù)咨詢網(wǎng)站!!!
樹人論文網(wǎng)
學(xué)術(shù)咨詢服務(wù)

JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS

來源: 樹人論文網(wǎng) 瀏覽次數(shù):246次
周期:Monthly
ISSN:0218-2165
影響因子:0.461
是否開源:No
年文章量:148
錄用比:容易
學(xué)科方向:數(shù)學(xué)
研究方向:數(shù)學(xué)
通訊地址:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
官網(wǎng)地址:http://www.worldscientific.com/worldscinet/jktr
投稿地址:http://www.editorialmanager.com/jktr/login.asp
網(wǎng)友分享經(jīng)驗:偏慢,4-8周

JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS雜志中文介紹

本雜志旨在為紐結(jié)理論的新發(fā)展,特別是在紐結(jié)理論與數(shù)學(xué)和自然科學(xué)的其他方面之間建立聯(lián)系的發(fā)展提供一個論壇。由于學(xué)科的性質(zhì),我們的立場是跨學(xué)科的。繩結(jié)理論作為一門核心的數(shù)學(xué)學(xué)科,受到許多形式的推廣(虛擬繩結(jié)和連桿、高維繩結(jié)、其它流形中的繩結(jié)和連桿、非球面繩結(jié)、類似于打結(jié)的遞歸系統(tǒng))。結(jié)點生活在一個更廣泛的數(shù)學(xué)框架中(三維和高維流形分類、統(tǒng)計力學(xué)和量子理論、量子群、高斯碼組合學(xué)、組合學(xué)、算法和計算復(fù)雜性、拓?fù)浜痛鷶?shù)結(jié)構(gòu)的范疇理論和范疇化、代數(shù)拓?fù)洹⑼負(fù)淞孔訄稣?。將發(fā)表的論文包括:節(jié)點與連桿理論的新研究及其應(yīng)用相關(guān)領(lǐng)域的新研究;教程和復(fù)習(xí)論文。通過這本雜志,我們希望能很好地服務(wù)于結(jié)理論和拓?fù)湎嚓P(guān)領(lǐng)域的研究人員,研究人員在他們的工作中使用結(jié)理論,科學(xué)家有興趣了解當(dāng)前在結(jié)理論及其分支的工作。

JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS雜志英文介紹

This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).Papers that will be published include:new research in the theory of knots and links, and their applications;new research in related fields;tutorial and review papers.With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.

JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS影響因子